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Abstract:

Neuropathological features of frontotemporal dementia and amyotrophic lateral sclerosis (ALS) due to C9rf72 GGGGCC
hexanucleotide repeat expansion include early dipeptide repeats, repeat RNA foci, and subsequent TDP-43 pathologies.
Since the discovery of the repeat expansion, extensive studies have elucidated the disease mechanism of how the repeat caus-
es neurodegeneration. In this review, we summarize our current understanding of abnormal repeat RNA metabolism and
repeat-associated non-AUG translation in C97f72 frontotemporal lobar degeneration/ALS. For repeat RNA metabolism,
we specifically focus on the role of hnRNPA3, the repeat RNA-binding protein, and the EXOSC10/RNA exosome com-
plex, an intracellular RNA-degrading enzyme. In addition, the mechanism of repeat-associated non-AUG translation inhib-
ition via TMPyP4, a repeat RNA-binding compound, is discussed.
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Introduction

Frontotemporal dementia (FTD) is a clinical concept of neu-
rocognitive disorder that encompasses several groups of neu-
rodegenerative conditions characterized by slowly progressive
and characteristic alterations or deficit in behavior, executive
function, and/or language . Recently, the term “frontotem-
poral lobar degeneration” (FTLD) is often used to define
these conditions from a neuropathological/mechanistic as-
pect. FTLD is heterogeneous in accumulating proteins and is
subclassified into several subgroups according to the major
contents of the accumulating protein. Among these, FTLD
cases with prominent tau pathology are called FTLD-tau, and
cases with abundant TDP-43 accumulation are called FTLD-
TDP.

These two categories account for roughly 90% of neuropa-
thologically confirmed FTLD cases.

Although the majority of FTLD-TDP cases are sporadic,
there are cases caused by genetic mutations. The most fre-
quent genetic cause of FTLD-TDP is the hexanucleotide re-
peat expansion mutation in the intron of the C97f72 (chro-

mosome 9 open reading frame 72) gene. In contrast to 2-23
(or up to 30) GGGGCC repeats in non-carriers, hundreds to
more than a thousand tandem expanded repeats can be found
in the expansion carriers. This mutation has been reported at a
low frequency in Japan, although there are some reported cas-
es @@ How these extended repeats cause TDP-43 protein
abnormalities, neurodegeneration, and ultimately neurocogni-
tive and motor neuron diseases has been actively debated since
the identification of repeat expansion.

TDP-43 is a ubiquitously expressed multifunctional
RNA-binding protein and confers splicing, RNA transports,
and metabolism. Physiologically, TDP-43 is predominantly
present within the nucleus and shuttles between the nucleus
and cytoplasm; however, in FTLD-TDP cases including the
C9orf72 mutation, neuronal TDP-43 typically forms aberrant
intracytoplasmic inclusions with a concomitant absence of
TDP-43 from the nucleus. The higher TDP-43-positive inclu-
sion load correlates well with the severity of neurodegenera-
tion. Thus, TDP-43 appears to be more akin to a downstream
executor of neuronal cell death.
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Mechanism of Repeat RNA Production
in C%rf72 FTLD/ALS

Aberrant DNA repeat expansion is a genetic cause and thus is
unquestionably upstream of the pathological cascade. First,
the DNA repeat is transcribed into an RNA repeat. As the ex-
panded repeat is located in the intron (or promoter) of the
C9orf72 gene, the mature Corf72 RNA transcript does not
contain the repeat region and thus none of mature COORF72
protein contains the translated repeat sequence. Then, how
does the repeat cause neurodegeneration? One hypothetical
mechanism is the repeat RNA toxicity. The repeat-containing
region in C9orf72 is bidirectionally (sense direction and anti-
sense direction) transcribed; accordingly, the GGGGCC re-
peat RNA transcript and CCCCGG repeat RNA transcript
are generated from the same DNA GGGGCC repeat expan-
sion. These repeat RNA sequences can sequestrate RNA-
binding proteins that preferentially bind to the repeated RNA
sequence. These RNA/protein complexes may aggregate, and
form intracellular structures called RNA foci. RNA foci are a
neuropathological hallmark in C97f72 repeat expansion carri-
ers and can be found not only in neurons but also in non-neu-
ronal cells (astrocytes, microglial cells, fibroblasts, transformed
lymphoblasts, etc.). Although still controversial ©, several
studies have revealed a correlation between RNA foci with
neurodegeneration in C9orf72 FTLD/ALS cases . More-
over, a zebrafish model demonstrated clear repeat RNA toxici-
ty ®.

Mechanism of DPR Production in C%rf72
FTLD/ALS

The other disease hallmark of C97f72 FTLD/ALS cases is the
accumulation of dipeptide repeat proteins (DPRs) . Tran-
scribed intronic repeat RNA not only forms RNA foci but is
also translated through repeat-associated non-AUG (RAN)
translation *”. RAN translation can occur in all possible read-
ing frames and thus results in the production of five different
DPRs from the bidirectionally transcribed repeat
RNA ©02.09.09 Conventional translation requires a “start
translation here” signal during ribosomal scanning from the
5'- to 3'-side of an RNA molecule. The start signal is usually
an AUG (encoding methionine) initiation codon with a sur-
rounding sequence that matches the Kozak rule well. Repeat-
associated non-AUG translation (RAN translation) " is rec-
ognized as an unconventional translation event in which
translation of the repetitive sequence occurs in the absence of
an AUG initiation codon.

It is believed that there are at least two types of RAN
translations: those initiated from near cognate codons (for ex-
ample, one base mismatch) and those initiated from specific
RNA structures such as RNA hairpins.

The start site of RAN translation in the poly-Gly-Ala
(GA) reading frame of the C97f72 repeat expansion has been
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reported as a CUG codon in the 5'-flanking region of the
GGGGCC repeat ). It has also been suggested that this CUG
codon-dependent RAN translation of poly-GA is involved in
the production of poly-Gly-Pro (GP) and poly-Gly-Arg (GR)
through translational frameshift ¢ 7. Conversely, another
group has ruled out the production of poly-GP and poly-GR
by frameshifting "¥. Additionally, the presence of an AUG-ini-
tiated upstream open reading frame (uORF) of 180 bases
spanning exon 1 and intron 1 of the C97rf72 gene located in
the poly-GP reading frame was reported *”. This uORF ends
just before the GGGGCC repeat and translation of the uORF
suppresses RAN translation in poly-GA and poly-GP frames,
adding further complexity to the regulation of C97f72 RAN
translation.

The molecules that mediate RAN translation are still little
known. RPS25, a factor previously known to be associated
with Internal Ribosome Entry Site-dependent translation,
was reported to activate RAN translation ®. The RNA heli-
case DHX36 unwinds the G-quadruplex structure of
GGGGCC repeats and promotes RAN translation, whereas
DDX3X conversely represses the RAN translation of
GGGGCC repeats in an RNA helicase activity-dependent
manner ®®. Cellular stress has also been reported to enhance
RAN translation via the phosphorylation of eIF2a %,
Double-stranded RNA-dependent protein kinase (PKR),
which is activated by repeat RNA, also enhances RAN trans-
lation via the phosphorylation of eIF2a. Conversely, the anti-
diabetic drug metformin, a PKR inhibitor, inhibits RAN
translation ®¥. These RAN translation regulators are attract-
ing attention as potential target molecules for disease-modify-
ing drugs in C9rf72 FTLD/ALS via the inhibition of RAN

translation.

Mechanisms of DPR-mediated
Neurodegeneration

The neurotoxicity of DPR generated by RAN translation has
been shown in multiple disease models. The most abundant
DPR poly-GA aggregates adsorb large amounts of stacked
proteasomes, which impairs intracellular proteostasis . In
contrast, poly-GP and poly-Pro-Ala (PA) have been shown to
have no apparent toxicity ®.

Cellular organelles, such as the endoplasmic reticulum, ly-
sosomes, mitochondria, and nucleus, are intracellularly com-
partmentalized by lipid bilayers, as described in textbooks. Un-
like these classical organelles, intracellular structures, such as
the nucleolus, centrosome, spliceosome, and stress granules,
do not have such membrane partitions of lipid bilayers. Lig-
uid-liquid phase separation is a mechanism commonly used in
cells as a principle for ordering the formation and mainte-
nance of such non-membranous structures. Poly-GR and
poly-Pro-Arg (PR), that is, DPRs containing arginine residues
within the repeat motif, preferentially disrupt the behavior of
this liquid-liquid phase separation, leading to the impaired ar-
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chitecture and function of the membrane-less organelles, in-
cluding stress granules #” ¥, chromatin ©”, nuclear membrane
pores, and nucleoli @61,

A major physiological function of nucleoli is the produc-
tion of cellular translational machinery, the ribosome. Poly-
GR and poly-PR accumulate on nucleoli and inhibit riboso-
mal (r)RNA production @ in part through the inhibition of
small nucleolar RNA maturation ®?. In addition, poly-GR
and poly-PR directly inhibit translation through their interac-
tion with ribosomes ® ¢ Thus, each DPR is thought to
impair cellular function through different mechanisms, even-
tually leading to neuronal death.

Identification of hnRNPA3, the Repeat
RNA Suppressor

There is debate about whether the repeat RNA itself is neuro-
toxic because of the difficulty in fully separating repeat RNA
toxicity from DPR toxicity ©°. Even so, an association between
RNA foci and the abnormal localization of TDP-43 has been
noted in autopsy cases 7. We previously established an 77 vi-
tro RNA-binding assay to purify RNA-binding proteins that
selectively bind to GGGGCC repeat RNA, followed by their
identification by mass spectrometry ©. We then performed
secondary immunohistochemical screening for these candi-
date proteins using the hippocampal tissue of patients with
C90rf72 FTLD/ALS and compared them with control tissue.
From this, we noticed that hnRNPA3 is present in the cell nu-
cleus in healthy tissues, whereas in tissues of patients with
C9rf72 FTLD/ALS, nuclear staining was variably lost, and
hnRNPA3-positive inclusion pathology was observed in the
hippocampal dentate gyrus #.

So, how does hnRNPA3 affect the pathogenesis of
C9orf72 FTLD/ALS? To answer this question, we performed
functional analysis of hnRNPA3 in the context of Corf72
FTLD/ALS. siRNA-mediated knockdown of hnRNPA3 in
cells exogenously expressing GGGGCC repeats increased the
accumulation level of GGGGCC repeat RNA. An RNA-
binding domain mutant of hnRNPA3 lacked the ability to
rescue the phenotype. Conversely, overexpression of
hnRNPA3 decreased the expression level of repeat RNA.
Thus, hnRNPA3 repressively regulates the repeat RNA ex-
pression level and this inhibits the DPR expression level.
These findings were confirmed from analyses using patient-de-
rived fibroblasts and primary cultured rat neurons, as well as
from analyses of patient brains. These results indicate that
hnRNPA3 suppresses repeat RNA expression levels by pro-
moting repeat RNA metabolism. When hnRNPA3 is lost and
this repression is compromised, there is a marked accumula-
tion of repeat RNA and an increased expression level of
DPR (38), (39).
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Mechanism of Repeat RNA Degradation
by the RNA Exosome Complex and Its
Disruption

As the expanded repeat hinders efficient transcription, the ex-
pression levels of mature C9%rf72 mRNA transcripts in cells
derived from C9orf72 mutation carriers are only about half
that of those without the repeat expansion. However, repeat
RNA, derived from the same RNA transcript, accumulates as
RNA foci. As an explanation for this seemingly contradictory
phenomenon, we considered the possibility that the degrada-
tion of abnormally elongated repeat RNAs is impaired.

As there was no prior knowledge of how GGGGCC re-
peat RNA is degraded in the cell, we first knocked down mol-
ecules constituting several representative RNA-degrading en-
zyme systems and monitored the expression level of DPR as a
readout in preliminary experiments. With this, we found that
EXOSC10 plays an important role in the degradation of re-
peat RNA . The RNA exosome complex is a multimeric
protein complex that governs the metabolism of RNA and
this EXOSC10 is a nucleolar enriched subunit of the RNA
exosome complex. Interestingly, the genetic mutations of oth-
er components of the RNA exosome complex have been
linked with neurodegenerative phenotypes ¢ @62,

The knockdown of EXOSC10 in fibroblasts derived from
patients with C907f72 FTLD/ALS resulted in intracellular re-
peat RNA accumulation and increased nuclear RNA foci,
suggesting that the EXOSC10/RNA exosome complex is in-
volved in the metabolism of endogenous repeat RNA in pa-
tient-derived cells. In cells that expressed poly-GR or poly-PR
through RAN translation, EXOSC10 was redistributed dif-
fusely into the nucleus instead of being confined to the nucle-
olus.

Moreover, these arginine-rich DPRs inhibit endogenous
EXOSC10 activity, which leads to the additional accumula-
tion of GGGGCC repeat RNA. These results suggest that
poly-GR and poly-PR inhibit the metabolism of repeat RNA
by inhibiting the EXOSC10/RNA exosome complex. The ac-
cumulation of repeat RNA accelerates poly-GR and poly-PR
production through RAN translation, thus further aggravat-
ing the pathological processes .

Mechanism of Inhibition of RAN
Translation by the Repeat RNA-binding
Compound TMPyP4

The selective inhibition of RAN translation and DPR pro-
duction may lead to the development of a novel therapeutic
strategy @4 GGGGCC repeat RNA is known to adopt a
strong tertiary structure called the G-quadruplex in the pres-
ence of potassium ions. TMPyP4 (5,10,15,20-Tetrakis-(N-
methyl-4-pyridyl)porphine) is a type of porphyrin that has
been reported to bind to the G-quadruplex of GGGGCC re-
peat RNA ¢9. We therefore investigated the effect of TMPyP4
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on RAN translation of C9rf72 GGGGCC repeats. In a cel-
lular model, TMPyP4 inhibited DPR production by RAN
translation, while sparing the repeat RNA expression level,
nucleocytoplasmic distribution of repeat RNA, and global
translational activity. Though an artificial insertion of the
AUG initiation codon just before the repeat strongly en-
hanced repeat translation through conventional initiation,
TMPyP4 strongly inhibited repeat translation even in the
presence of the AUG initiation codon, suggesting that
TMPyP4 does not specifically inhibit the non-AUG-depend-
ent initiation of RAN translation. This finding led us to the
hypothesis that TMPyP4 may inhibit the elongation step of
RAN translation rather than non-AUG initiation. If elonga-
tion is inhibited, a large number of ribosomes stop on a single
repeat RNA, and the complex of repeat RNA and ribosomes
can be recovered in the higher-density fraction of sucrose den-
sity-gradient centrifugation of cytoplasmic cell lysate. Indeed,
in cells treated with TMPyP4, more repeat RNA was found in
the poly-ribosomal (highest density) fractions than in untreat-
ed cells. Furthermore, TMPyP4 and repeat RNA showed a
strong interaction that was resistant to denaturing urea. The
tight interaction between TMPyP4 and repeat RNA would
physically inhibit ribosomal translocation. These results sug-
gest that TMPyP4 binds tightly to GGGGCC repeat RNA
and inhibits RAN translation by blocking the RAN transla-

tion elongation 7.

Association of DPR with TDP-43
Proteinopathy

It has been pointed out that DPR and repeat RNA, as well as
TDP-43 aggregates themselves, disrupt nucleocytoplasmic
transport mechanisms and nuclear membrane pore function
in multiple disease models ¥ ® 696162 In particular, in a
mouse model expressing 200 repeated poly-GR, poly-GR was
found to cause TDP-43 aggregation in the cytoplasm via the
mislocalization of nucleocytoplasmic transport factors and
nuclear pore component proteins, pointing to a link between
DPR and TDP-43 pathology ©?.

The relationship between DPR pathology and clinical
phenotypes in human patients remains unclear and requires
further investigation. Although TDP-43 inclusion pathology
correlates well with neurodegeneration, it has been noted that
DPR inclusion pathology does not usually co-localize with
TDP-43 inclusion. However, recent detailed reports have
pointed to an association between poly-GR load and neurode-
generation ¢ %69, In addition, a small number of cases have
been reported with clinical FTD and abundant DPR patholo-
gy at autopsy, but little or no TDP-43 pathology 7%,

Loss of Function of C9O0RF72 Protein and
C9rf72 FTLD/ALS Pathology

The function of the CIORF72 protein encoded by the
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C9rf72 open reading frame was initially unknown, but its
physiological function and role in C907f72 FTLD/ALS patho-
genesis have gradually become clear. The COORF72 protein
forms a heterotrimer complex with SMCR8 and WDR41 and
functions in the autophagy/lysosome system. As abnormally
expanded GGGGCC repeats reduce the efficiency of tran-
scription by RNA polymerase, the expression of COOREF72
protein is decreased ", Importantly, no neurodegeneration
is observed in C9rf72 knockout mice ”, but systemic inflam-
mation, including in the brain, lymph node enlargement, sple-
nomegaly, and shortened lifespan due to autoimmune reac-
tions have been observed . Such lysosomal system dysfunc-
tion and systemic inflammation are considered to exacerbate
repeat-mediated gain of toxicity €€ ),

Therapeutic Approach and Utility of DPR
as Biomarker

Several attempts are being made to develop a treatment for pa-
tients with C907f72 FTLD/ALS. One such approach is an an-
tisense oligonucleotide (ASO), which effectively reduces re-
peat-containing transcripts “?. Another approach is to identify
the RAN translation inhibitor that can selectively inhibit
RAN translation, while sparing conventional translation as
mentioned in the above section. The other approach includes
repeat transcription inhibitors 7.

Biomarkers reflecting disease status are important for diag-
nosis, disease progression monitoring, and assessment of re-
sponse to potential treatment. Although RAN translation is
considered a rather inefficient event, DPRs can be detected
with state-of-the-art highly sensitive assays in the cerebrospinal
fluid (CSF) of patients or carriers with C907f72 mutations. Es-
pecially, poly-GP, which is relatively abundant and has less ag-
gregation potency, could be detected in cases with C907f72 re-
peat expansion specific manner and is currently used as a tar-
get engagement biomarker to demonstrate proof of concept in
drug discovery. Poly-GP levels are rather consistent in each pa-
tient in repeated measurements ¢ 07002 The frequently
used assay platforms are based on Meso Scale Discovery ELI-
SA or single-molecule array ¥,

Recent highly sensitive assays also enabled poly-GA and
poly-GR measurements from the CSF of patients with
C9orf72%). CSF poly-GA and poly-GR levels did not correlate
with clinical phenotypes, but a patient with C9rf72-ALS
treated with an ASO targeting the repeat-containing C9orf72
transcript showed decreased CSF poly-GA, poly-GP, and poly-
GR levels.

Summary and Prospects

Extensive efforts to elucidate the pathogenesis of C9orf72
FTLD/ALS have so far suggested that autophagic dysfunction
due to haploinsufficiency of the COORF72 protein enhances
primary gain of toxicities from repeat RNA and DPR. Inter-
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estingly, this mutation is known to cause psychiatric symp-
toms more frequently than FTD because of other genetic
causes or sporadic FTD ¢ By analyzing the disease
mechanism of this particular mutation in detail, we hope to
contribute to develop more accurate and early diagnosis and
disease-modifying therapy. More specifically, we hope to ex-
tend the knowledge gained from the analysis of hereditary
FTD to the pathophysiology of more frequent sporadic FTD.
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