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Using Spatial Scan Statistics and Geographic Information Systems to Detect
Monthly Human Mobility Clusters and Analyze Cluster Area Characteristics
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Abstract:
Introduction: This study evaluated the detection of monthly human mobility clusters and characteristics of cluster areas
before the coronavirus disease 2019 (COVID-19) outbreak using spatial epidemiological methods, namely, spatial scan sta-
tistics and geographic information systems (GIS).
Methods: The research area covers approximately 10.3 km2, with a population of about 350,000 people. Analysis was con-
ducted using open data, with the exception of one dataset. Human mobility and population data were used on a 1-km mesh
scale, and business location data were used to examine the area characteristics. Data from January to December 2019 were
utilized to detect human mobility clusters before the COVID-19 pandemic. Spatial scan statistics were performed using
SaTScan to calculate relative risk (RR). The detected clusters and other data were visualized in QGIS to explore the features
of the cluster areas.
Results: Spatial scan statistics identified 33 clusters. The detailed analysis focused on clusters with an RR exceeding 1.5.
Meshes with an RR over 1.5 included one with clusters for 1 year which is identified in all months of the year, one with
clusters for 9 months, three with clusters for 6 months, three with clusters for 3 months, and four with clusters for 1 month.
September had the highest number of clusters (eight), followed by April and November (seven each). The remaining
months had five or six clusters. Characteristically, the cluster areas included the vicinity of railway stations, densely populat-
ed business areas, ball game fields, and large-scale construction sites.
Conclusions: Statistical analysis of human mobility clusters using open data and open-source tools is crucial for the ad-
vancement of evidence-based policymaking based on scientific facts, not only for novel infectious diseases but also for exist-
ing ones, such as influenza.
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Introduction

Coronavirus disease 2019 (COVID-19) is an infectious disease
that has affected over 760 million people worldwide, resulting
in more than 6.8 million deaths (1). Various strategies have been
employed to combat the COVID-19 pandemic, including
nonpharmaceutical interventions (NPIs), such as effective
communication strategies and governmental support; strict
measures, such as lockdowns; and pharmaceutical interven-
tions, such as vaccines and antiviral drugs (2). Since the early
stages of the pandemic outbreak, NPIs delayed the spread of
the infection as effectively as strict solutions. NPIs typically in-

volve measures such as social distancing and cancellation of
small-scale gatherings (3), primarily implemented by local
health departments. However, restrictions imposed by local
governments can infringe human rights (4). Therefore, nonres-
trictive and effective measures are necessary. Moreover, infec-
tious disease policies should be grounded in scientific facts to
form the basis for evidence-based policymaking (EBPM).

Avoiding infectious disease clusters through NPIs is cru-
cial to containing infection and death rates. Spatial epidemiol-
ogy and spatial scan statistics (SSS), including the examination
of disease clusters, have been employed in the analysis of can-
cer incidence rates, healthcare sectors, and COVID-19 clus-
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ters (5), (6), (7), (8), (9). To date, the data utilized to develop COV-
ID-19 countermeasures have been derived from the examina-
tion of disease clusters after the outbreak. Analyzing the char-
acteristics of human mobility clusters using data from periods
without outbreaks is essential to rapidly manage emerging in-
fectious diseases and prepare business continuity plans for
health administrations. In this study, “human mobility clus-
ter” refers to the aggregation of groups in an area resulting
from human movement and is not meant to denote the aggre-
gation of infectious disease patients, which is commonly used
in the context of infectious diseases (10), (11), (12). In Japan, human
flow data have been used to support NPIs, such as social dis-
tancing (13), and statistical identification of human mobility
clusters is necessary because dense human gatherings pose a
risk of COVID-19 cluster formation.

This study aimed to detect human mobility clusters be-
fore the COVID-19 pandemic using SSS and elucidate the
characteristics of cluster areas, thereby facilitating the imple-
mentation of NPIs.

Materials and Methods

Data
This study used open data available online, with one excep-
tion (business location information). Boundary data for the
target region, using administrative district data, were obtained
from the National Land Numerical Information site of the
Ministry of Land, Infrastructure, Transport and Tourism (14).
Residential population data, using future population data
with a 1-km mesh (H30 National Bureau Estimates), were also
obtained from the same site (15). The future estimated popula-
tion was calculated by the National Institute of Population
and Social Security Research using the 1-km mesh format
based on the 2018 census results every 5 years from 2020 to
2050 (16). Mesh data, a digitalized map format for various statis-
tical information (17), were used, with each mesh being a 1-km
square dividing the area. However, as no data were available
for 2019, the 2020 total estimated population was used. Hu-
man flow data were obtained from the nationwide human
flow open data of the G Spatial Information Center (1-km
mesh) (18). The resident population was based on GPS data col-
lected from smartphones using Agoop SDK (19). The average
number of people per day during 1 month was calculated
based on the converted population value, and the data were
available from January 2019 on a monthly basis. Monthly data
between January and December 2019 were selected to exclude
the impact of COVID-19. Comprehensive data were obtained
by selecting the full-day data for each month. As railways af-
fect human flow, railway station and line data were obtained
from the National Land Numerical Information site (20).

Business location information was purchased from Zenrin
Co., Ltd., which sells corporate search data. These data com-
bine information, including location data, on approximately 6
million corporations in Japan, encompassing a wide range of

companies and organizations (21). In this study, the data were
classified and mapped into five categories: eateries, customer
attraction stores, offices, retail stores, and medical and care fa-
cilities.

Figure 1 shows the geographical location of Takatsuki
City in Japan, where the analysis was conducted. Takatsuki
City is a municipality located in Osaka Prefecture, Western Ja-
pan, between Kyoto and Osaka. The northern part of the city
is mountainous, featuring scenic tourist spots along highways,
whereas the southern part is urban, with a mix of redeveloped
high-rise apartments and traditional houses. Two railway com-
panies operate in the city, with a major commercial area cen-
tered around the railway station in the city center. The popu-
lation is approximately 350,000, with children below 14 years
old, people of productive age (15-64 years old), and older
adults (65 years old or older) accounting for 21%, 57%, and
28% of the total population (22).

Mapping
To examine the geographical distribution of the future esti-
mated population and human flow data, QGIS (version
3.28.3) was used. QGIS, an official project of the Open Source
Geospatial Foundation, is a user-friendly open-source geo-
graphic information system (GIS) (23). It has an intuitive UI
and robust spatial analysis capabilities and is continually up-
graded with numerous additional features through plugins de-
veloped by contributors worldwide. The downloaded data
were inputted into QGIS for mapping, enabling data visuali-
zation and examination of the geographical distribution of
clusters identified through scan statistics. Furthermore, the
characteristics of businesses located in the detected cluster
areas were obtained using corporate search data. To under-
stand the geographical trends, aerial photographs from the
Geospatial Information Authority of Japan’s Geospatial In-
formation Tiles were used as background maps (24).

Spatial scan statistics (SSS) using the poisson
distribution
SaTScan™ (version 10.1, 64 bits) was used to detect clus-
ters (25). SaTScan was developed in 1997 by Professor Kulldorff
of Harvard Medical School. It is a free software capable of per-
forming statistical analyses to detect clusters (disease agglom-
erations) in space or space-time (26). SSS involves the use of a
window, referred to as a connected area, that could potentially
be a cluster within a larger connected region. This circular
window was continuously expanded and moved, and the win-
dow with the maximum likelihood ratio, as determined by a
Monte Carlo probability simulation, was considered to be the
most likely cluster (26), (27). If the observed values within a win-
dow are significantly higher than the expected values based on
the Poisson distribution, this indicates the presence of a clus-
ter. Conversely, it is also possible to detect clusters that are not
statistically significant. Expected values can be calculated using
the area population, and the degree of agglomeration is ex-
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pressed as relative risk (RR). SSS has been applied in various
fields beyond epidemiological research and is particularly ef-
fective in detecting hotspot clusters in suburban areas with
low population densities. Thus, it is suitable for detecting
clusters in areas such as the study area (28), with a densely popu-
lated southern area and mountainous northern area with a
low population density.

The following SaTScan settings were used to conduct SSS
(Table 1). The location ID in the coordinate file correspond-
ed to the mesh ID, and the centroids of each mesh were calcu-
lated using the geometry tool in QGIS. The latitude and lon-
gitude were obtained using the function feature of the field
calculator.

Furthermore, the space-time scan statistic (STSS) can be
performed using SaTScan if the concept of time is includ-

ed (29). However, STSS is suitable for examining when the larg-
est clusters occur within a specific period, whereas SSS is more
appropriate for detecting monthly clusters and identifying
their characteristics (30), which was the focus of this study.
Therefore, this study employed SSS for cluster detection.

Results

Figure 2 shows the geographical distribution of the residen-
tial population, human flow, and business locations in Takat-
suki City. The residential population of Takatsuki City in
2020 was concentrated in the southern part of the city, partic-
ularly along the railway lines. Contrarily, the northern part,
which is mountainous, had a smaller residential population
with some meshes containing no residents. The human flow

Figure 1. Takatsuki City (indicated in red). ⒸOpenStreetMap contributors (38)

Table 1. Data and Settings for Conducting Spatial Scan Statistics.

Software settings Spatial Scan Statistics

Case File Population in 1-km mesh

Population File Future population projection in 1-km mesh (total number of men and women in 2020)

Coordinate File Latitude and longitude of the 1-km mesh center of the gravity point

Probability Model Discrete Poisson

Spatial Window Shape Circular

Maximum Spatial Cluster Size 50% of the population at risk

Maximum Monte Carlo Permutations 999

Criteria for Reporting Secondary Clusters No geographical overlap

P-value P < 0.05
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data for January 2019 showed a similar trend to that of the res-
idential population, with a higher concentration of people
around the four railway stations in the city. In addition, the
heatmap showed a concentration of business locations around
railway stations in the southern part of the city. Expanding the
area where businesses are concentrated and mapping their lo-
cations enable a detailed understanding of the geographical
distribution trends. This instance examined only the industry
type; however, the subsequent analysis utilized data contained
in the business location information, including business
names, addresses, detailed industry types, and latitudes and
longitudes (only location information is shown Figure 2d)
due to data usage agreement terms).

Cluster detection using spatial scan statistics
(SSS)
SSS revealed that 33 meshes had significant clusters detected in
at least 1 month of 2019. Some meshes showed significant
clusters throughout the year, whereas others were identified as
clusters only during specific months. Clusters with an RR be-
low 1.5 exhibited low monthly variation and consistently re-
mained below 1.5. Therefore, 14 meshes with an RR exceed-
ing 1.5 were selected for a detailed analysis because they repre-
sented areas with a high risk of human gathering and signifi-
cant monthly variability, potentially indicating the occurrence
of seasonal events (Table 2 and Figure 3). Meshes with an
RR above 1.5 included two that showed clusters throughout

Figure 2. (a) Residential population per mesh (blue = few residents; red = many residents). (b) Human flow per mesh for January
2019 (blue = few residents; red = many residents). (c) Heatmap based on corporate search data demonstrating the distribution of
business locations. (d) Business locations in the southern part of the city, where businesses are most densely situated (red: eateries;
pink: customer attraction stores; blue: retail stores; green: offices; yellow: medical and care facilities). Each side of all black squares
is 1 km. GSI Tile (National Latest Photo [Seamless]) provided by GSI is used as a background map.
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the year (1 and 2), two for 9 months (3 and 4), three for 6
months (5, 6, and 7), three for 3 months (8, 9, and 10), and
four for 1 month (11, 12, 13, and 14). September had the
most clusters (eight), followed by April and November (seven
each), whereas the remaining months had five or six clusters.

Characteristics of cluster areas
Factors potentially contributing to high risk in the detected
cluster areas were identified using business location informa-
tion. Cluster 1 was detected throughout the year and consis-
tently exhibited a high monthly RR > 2.4. Cluster 1 was locat-

ed in a hub for public transportation with stations of various
railway companies and a high concentration of eateries and of-
fices, which matched the heatmap results. Cluster 3 was locat-
ed in the central-eastern part and formed in April 2019. A ma-
jor highway expansion project was identified at this location.
Clusters 5, 6, 10, and 13 shared common features, such as
comprehensive sports parks, baseball fields, soccer fields, and
tennis courts. Cluster 7, which was detected from January to
April, September, and November, was identified as a golf
course. Cluster 11 had a high RR (RR = 4) only in October
and included a valley known for beautiful autumn leaves and

Table 2. Detected Clusters with a Relative Risk Above 1.5.

No. Mesh ID

2019-01 2019-02 2019-03 2019-04

Observation Expected
Case

Population RR
Observation
Case

Expected
Case

Population RR
Observation
Case

Expected
Case

Population RR
Observation
Case

Expected
Case

Population RR

1 52352419, 52352429 50,681 22,838.28 23,962 2.45 52,411 22,499.00 23,962 2.59 52,389 22,564.52 23,962 2.58 52,982 22,684.52 23,962 2.6

2 52351468 1,873 1,032.25 1,083 1.82 1,983 1,016.92 1,083 1.96 1,879 1,019.88 1,083 1.85 1,743 1,025.30 1,083 1.7

3 52352550 219 79.39 84 2.76

4 52353435 52 27.55 29 1.89

5
52352465, 52352466
52352456, 52352476

1,011 431.10 452 2.35 726 424.70 452 1.71 981 428.20 452 2.29

6 52352446, 52352456

7 52351448 512 342.00 359 1.50 532 336.92 359 1.58 510 337.90 359 1.51 512 339.69 359 1.51

8 52352419 21,159 8,856.15 9,292 2.49 22,052 8,749.99 9,292 2.63 22,268 8,796.52 9,292 2.65

9 52352429 29,522 13,982.13 14,670 2.22 30,337 13,814.53 14,670 2.32 30,714 13,888.00 14,670 2.34

10
52352465, 52352466
52352456, 52352476
52352446

11 52352456

12 52352476, 52352486 157 59.86 64 2.62

13
52352466, 52352465
52352476

14 52352501

No. Mesh ID

2019-05 2019-06 2019-07 2019-08

Observation
Case

Expected
Case

Population RR
Observation
Case

Expected
Case

Population RR
Observation
Case

Expected
Case

Population RR
Observation
Case

Expected
Case

Population RR

1 52352419, 52352429 52,698 22,934.34 23,962 2.55 52,796 22,787.52 23,962 2.59 50,767 22,633.56 23,962 2.48 50,143 22,523.75 23,962 2.46

2 52351468 1,892 1,036.60 1,083 1.83 1,946 1,029.96 1,083 1.9 1,925 1,023.00 1,083 1.89 1,941 1,018.04 1,083 1.91

3 52352550 252 80.27 84 3.14 219 79.75 84 2.75 254 79.22 84 3.21 258 78.83 84 3.27

4 52353435 50 28.08 29 1.78 95 27.90 29 3.41 70 27.71 29 2.53 81 27.58 29 2.94

5
52352465, 52352466
52352456, 52352476

1,080 432.92 452 2.5 1,096 430.15 452 2.55 1,085 427.24 452 2.54

6 52352446, 52352456 1,279 659.04 689 1.94 1,251 650.40 689 1.93

7 52351448

8 52352419

9 52352429

10
52352465, 52352466
52352456, 52352476
52352446

11 52352456

12 52352476, 52352486

13
52352466, 52352465
52352476

351 155.07 165 2.26

14 52352501

(Table continued on next page)
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hot springs. Similarly, Cluster 12, which was detected only in
March, encompasses a mountaintop well known for cherry
blossoms.

Discussion

This study identified monthly human mobility clusters and
their characteristics before the COVID-19 pandemic using
SSS, GIS, and integrated business location data. The results
indicated that human mobility clusters were associated with
areas central to public transportation, commercial areas with a
high concentration of eateries and offices, construction sites,
comprehensive sports parks, and ball game fields. Seasonal var-
iations were also observed.

The use of GIS to represent multiple data types on a single
map is crucial. This enables a realistic representation of physi-
cal spaces based on geographical spatial information by com-
bining data on population dynamics, human mobility, trans-
portation, and business locations. This approach is crucial for
public health professionals, including health officers, for com-
munity diagnosis and surveillance, not only during outbreaks
but also in regular times (31).

Mapping of SSS results in GIS promotes a common un-
derstanding among epidemiologists, public health experts,
and the general public. SaTScan outputs cluster information

in widely used GIS formats, such as Shapefiles and KML files
for Google Earth (32).

This study conducted SSS on a computer; however, cloud
implementation could allow for on-demand execution, reduce
processing time, and benefit health authorities when using
large datasets (33).

The detected cluster areas were confirmed using business
location information. However, some clusters, such as 4 and
7, were detected in areas without corresponding business loca-
tions, indicating that some clusters may be transit points. For
instance, a large golf course was located beyond Cluster 4.
Road information and data from neighboring municipalities
could provide further insight into cluster characteristics (34).

In addition, local interviews could be valuable, as local
customs and festivals are potential cluster sources (35). Howev-
er, these data are often not openly available. Combining GIS
with interviews in spatial epidemiology can validate the spatial
analysis results (36).

Evidence-based policy decisions are preferred, particularly
for public institutions that implement policies restricting hu-
man rights or require substantial budgets. This study identi-
fied areas prone to human mobility clusters and suggested
areas where interventions should be seasonally intensified or
relaxed. During the COVID-19 response, European countries
initially justified lockdowns based on science but later priori-

Table 2. Continued.

No. Mesh ID 2019-09 2019-10 2019-11 2019-12

Observation
Case

Expected
Case

Population RR
Observation
Case

Expected
Case

Population RR
Observation
Case

Expected
Case

Population RR
Observation
Case

Expected
Case

Population RR

1
52352419,
52352429

53,489 22,702.64 23,962 2.63 53,578 22,747.16 23,962 2.63 53,169 22,676.04 23,962 2.62 55,021 23,201.01 23,962 2.65

2 52351468 1,868 1,026.12 1,083 1.83 1,841 1,028.14 1,083 1.8 1,891 1,024.92 1,083 1.85 1,770 1,048.65 1,083 1.69

3 52352550 185 79.46 84 2.33 231 79.61 84 2.9 231 79.36 84 2.91 177 81.20 84 2.18

4 52353435 56 27.80 29 2.01 62 27.85 29 2.23 73 27.76 29 2.63 90 28.41 29 3.17

5

52352465,
52352466
52352456,
52352476

6
52352446,
52352456

1,129 652.38 689 1.73 1,756 653.66 689 2.7 1,400 651.62 689 2.15 1,340 666.70 689 2.01

7 52351448 517 339.96 359 1.52 521 339.57 359 1.54

8 52352419

9 52352429

10

52352465,
52352466
52352456,
52352476
52352446

1,356 808.68 854 1.68 1647 807.74 854 2.04 1,580 826.44 854 1.92

11 52352456 1,089 272.77 287 4

12
52352476,
52352486

13
52352466,
52352465
52352476

14 52352501 1,125 737.71 779 1.53

Notes. Mesh ID, unique number of the 1-km square grid dividing the area; Observation Case, number of people in the mesh; Expected Case, expected number of people as calculated using spatial scan statistics; Population, residential population in the mesh; RR,
relative risk calculated using the spatial scan statistics. All clusters were considered statistically significant at P < 0.01.
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tized economic values and voter opinions over scientific ad-
vice (37). To implement NPIs that are reasonable for human
rights, movement and similar measures can be restricted to the
smallest possible population within the minimum necessary
areas to suppress the spread of infectious diseases. In addition,
by identifying outbreak-prone areas based on the flow of peo-
ple and characteristics of regions during normal times, it is fea-
sible to issue preemptive warnings as NPIs based on data be-
fore imposing movement restrictions. As a result, if the out-
break is suppressed, it will be possible to minimize the need
for movement restrictions and other measures, thereby pro-
tecting human rights while controlling the spread of infec-
tious diseases.

Promoting EBPM based on open data and open-source
science facts is imperative, not only for new infectious diseases
but also for existing ones, such as influenza and RSV (3). To
utilize the results of this study for the implementation of
NPIs, it is important for municipalities or prefectural govern-
ments to estimate baseline data during normal times. Normal
times refer to periods before the arrival of new infectious dis-
eases or when diseases such as influenza are not in an outbreak
phase. By continuously understanding the baseline data of
people’s movements, it is believed that anomalies can be de-

tected and compare with the baseline when an infectious dis-
ease outbreak occurs. In addition, attempting to calculate the
baseline after an outbreak of an infectious disease could influ-
ence the time and human resources required to implement
outbreak suppression policies. Therefore, it is necessary to au-
tomate based on the results of this study using a system, there-
by reducing the burden on public health officials.

The reason for this is that the results of this study can flex-
ibly adapt to the differences in transmission patterns, groups
susceptible to infection, or age groups prone to severe illness
for each infectious disease. Depending on whether the infec-
tion is spread through contact or airborne transmission, the
size of the area for detecting human mobility clusters can vary.
Moreover, the data on human flow includes information such
as age, gender, and starting points. Although this study ana-
lyzed the data for the entire population, it is possible to limit
the analysis only to data for the elderly or for children based
on the characteristics of each infectious disease. This indicates
the possibility of developing customized outbreak suppression
policies tailored to individual infectious diseases. Further-
more, by accumulating these insights, when an unknown in-
fectious disease emerges, the best NPIs can be selected by
processing the vast amount of accumulated data with genera-

Figure 3. Geographical location and relative risk of clusters detected using spatial scan statistics (SSS) in each month between
January and December 2019. GSI Tile (National Latest Photo [Seamless]) provided by GSI is used as a background map.
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tive AI.
The universality of this methodology allows similar analy-

ses worldwide. All data utilized, except one source, were open.
SaTScan and QGIS are open-source and freely available soft-
ware packages for the implementation of SSS and GIS (38).
Business location data, although not open, can be substituted
with open-source alternatives, such as OpenStreetMap or free
aerial and satellite images provided by national geospatial au-
thorities (39).

SSS in SaTS can detect circular clusters; thus, noncircular
clusters may be overlooked, and low-risk areas may be includ-
ed in the results (40). Noncircular clusters can be detected using
software such as FleXScan; however, this software requires
more computational resources (41).

This study successfully employed spatial epidemiological
methods, SSS, and GIS to detect human mobility clusters and
analyze cluster area characteristics before the COVID-19 pan-
demic.
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